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On the Geometry of Orthomodular Spaces over
Fields of Power Series
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Orthomodular spaces are generalizations of Hilbert spaces with which they share
the basic property expressed by the Projection Theorem. We study two infinite-
dimensional orthomodular spaces, both constructed over the same field of power
series, but with different inner products. On the first space every bounded, self-
adjoint operator decomposes into an orthogonal sum of operators of rank 1 or
2; on the second space, in contrast, there exist self-adjoint operators that are
undecomposable. These differences reflect the fact that the underlying geometries
are dissimiliar.

1. INTRODUCTION

A hermitian space (E, F ) (over any field) is called orthomodular if the

lattice +(E, F ) of all orthogonally closed subspaces satisfies the orthomodular

law. Besides the classical examples of real, complex, or quaternionic Hilbert
spaces, there are nonclassical orthomodular spaces of infinite dimension

which are constructed over certain non-archimedianly valued complete fields

and are endowed with a natural non-archimedian norm. We consider the

algebra @(E ) of all bounded linear operators on such orthomodular spaces.

The main problem is whether a given self-adjoint, bounded operator

can be decomposed orthogonally. The answer is found to depend on both
the arithmetic of the base field and the geometry of the space. In Keller and

Ochsenius (1994, 1995) we stessed the role of the arithmetic; in the present

paper we concentrate on the geometry.

We shall deal exclusively with spaces over a field K 5 R(( G )) of

generalized power series with real coefficients and exponents in a group G .
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K is henselian, so the influence of the arithmetic is minimalized. We compare

two orthomodular spaces, (E (1), F (1)) and (E (2), F (2)), which are both con-

structed over K by the same general procedure, but with different inner
products. The two spaces have the same topological and analytical features,

but their geometries diverge. The geometric differences have a strong bearing

on operators. In fact, every self-adjoint operator on E (1) gives rise to a

representation of E as the closure of an orthogonal sum of invariant subspaces

of dimensions 1 or 2. On the space E (2), in turn, there exist bounded, self-

adjoint operators which do not admit any invariant closed subspace at all.
In Section 2 we describe the base field K 5 R(( G )) and the method of

constructing orthomodular spaces over K. In Section 3 we present the results

on operators. The paper is expository. We give outlines of proofs when they

cast light on the underlying geometric ideas.

2. CONSTRUCTION OF ORTHOMODULAR SPACES

2.1 The Base Field

We start with a direct sum

G : 5 Z % Z % ? ? ? % Z % ? ? ?

of countably many copies of the group of integers. G is an abelian, additive

group under componentwise operations. We order G antilexicographically.
Let K: 5 R(( G )) be the field of all generalized power series with expo-

nents in G and coefficients in R. Thus K consists of all series

j 5 o
g P G

a g t
g (a g P R)

for which the support

supp( j ) : 5 { g P G | a g Þ 0}

is a well-ordered subset of G . The operations on K are the obvious ones: if

j 5 ( g P G a g t
g and h 5 ( g P G b g t g , then j 1 h 5 ( g P G (a g 1 b g )t

g and j ? h
5 ( g P G c g t

g , where c g : 5 ( d 1 d 8 5 g a d b d 8.

There is a natural Krull valuation v: K ® G ø { ` } on K defined by

v ( j ) : 5 min supp( j ) if j Þ 0; v ( j ) 5 ` if j 5 0

The valued field (K, v) is a complete and henselian (Ribenboim, 1950).

2.2. The Space (E, F )

There is a general method which allows us to construct a host of ortho-

modular spaces over K. The procedure involves a technical device called
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ª typesº (for details we refer to Gross and KuÈ nzi, 1980, p. 199). The value

group of (K, v) is G 5 Z % Z % . . . . The elements of the quotient group

G /2 G > Z2 % Z2 % . . . are called the (algebraic) types of the field (K, v).
The type of g P G , denoted by T ( g ), is simply its image in G /2 G . The type

of a scalar 0 Þ l P K is defined by T ( l ) : 5 T (v ( l )). Then T ( j 2 l ) 5 T ( l )

for 0 Þ j P K.
Now we choose a sequence L : 5 ( l i)i P N0 of scalars l i P K for which

T ( l i ) Þ T ( l j ) for all i Þ j (*)

From (*) we deduce that ( l i)i P N0 satisfies the so-called type condition: if,

for any sequence ( j i)i P N0, the set {v ( l i j 2
i ) | i P N0} , G is bounded from

below, then l i j 2
i ® 0 as i ® ` .

Consider

E : 5 H ( j i )i P N0 P K N0 Z

the series o
`

i 5 0

j 2
i l i converges in the valuation topology J

Notice that a series ( `
i 5 0 j 2

i l i converges iff j 2
i l i ® 0. It follows that E is a

vector space under componentwise operations. We define a symmetric, bilin-

ear form F on E by

F (x, y) : 5 o
`

i 5 0

j i h i l i for x 5 ( j i )i P N0, y 5 ( h i )i P N0

We list the basic properties of the above space.

Theorem 1. (Gross and KuÈ enzi, 1980, Theorem 28):

(i) (E, F ) is an orthomodular space.
(ii) The map | ? | : E ® G ø { ` } defined by |x| : 5 v (x, x) is a non-

archimedian norm on E. The form F is continuous in the norm topology. E
is complete in the norm topology.

(iii) A linear subspace U of E is closed in the norm topology if and

only if it is orthogonally closed.
(iv) If x, y P E are orthogonal, x ’ y, then |x| Þ |y|. Consequently (E,

F ) is not isometric to any proper subspace

Properties (i)±(iii) show the close analogy to classical Hilbert spaces,

while (iv) gives evidence of remarkable new geometric features of the ortho-

modular spaces (E, F ).
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2.3. The Standard Base

For i P N0 we let

ei : 5 (0, . . . , 0, 1, 0, . . .) P E

be the vector that has 1 in place (i 1 1) and 0 in all other places. Then F
(ei , ej) 5 0 for i Þ j and F (ei , ei) 5 l i. Now, {ei | i P N0} is an orthogonal
continuous base of (E, F ), that is, every vector x P E can be expressed as

x 5 o
`

i 5 0

j i ei 5 lim
n ® ` 1 o

n

i 5 0

j i ei 2
We observe that, by Theorem 1(iv), the base {ei | i P N0} cannot be normalized

(SoleÁ r, 1995).

2.4. Residual Spaces

For n 5 0, 1, 2, . . . the set

D n : 5 Z % ? ? ? % Z % {0} % {0} % ? ? ? , Gp
n times

is a convex (or isolated) subgroup of G . To each D n there corresponds, by

general valuation theory, a valuation ring Rn : 5 { j P K | w ( j ) $ d for some
d P D n} with maximal ideal Jn : 5 { j P K | w ( j ) . d for all d P D n}. The

quotient KÃn : 5 Rn/Jn is called the residue field belonging to D n. KÃ
n is isomor-

phic to R(( D n)), the field of generalized power series with exponents in D n

(Ribenboim, 1950).

Next, the sets

Mn : 5 {x P E | F (x, x) P Rn}, Sn : 5 {x P E | F (x, x) P Jn}

are Rn-submodules of E. The quotient EÃn : 5 Mn/Sn is naturally a vector space

over KÃn. Moreover, the form F induces a symmetric bilinear form F Ãn on EÃ
n.

We call (EÃn , F Ãn) the residual space of (E, F ) belonging to the convex group D n.

Let p n: Mn ® EÃn 5 Mn/Sn be the canonical epimorphism. Every linear

subspace U of E is reduced under p n to a linear subspace UÃ
n 5 p n (U ) : 5

{ p n (x) | x P U ù Mn}. The reduction map p n preserves orthogonality, i.e.,

if U ’ W, then p n(U ) ’ p n(W ).

2.5. Bounded Linear Operators

A linear operator B: E ® E is called bounded if the subset

{|B (x)| 2 |x| | 0 Þ x P E } , G

has a lower bound in G . Clearly a bounded operator is continuous with respect

to the norm topology. However, in contrast to the classical case of Hilbert



Orthomodular Spaces over Fields of Power Series 89

spaces, there exist linear operators on (E, F ) which are continuous, but not

bounded. Notice also that a bounded operator cannot be assigned a norm in

the usual way because a bounded subset of G may fail to have a supremum.

3. DECOMPOSITION OF LINEAR OPERATORS

In this section we examine two particular orthomodular spaces, (E (1),
F (1)) and (E (2), F (2)), and we study the problem of orthogonal decompositions

of bounded, self-adjoint operators. The spaces are obtained by specifying the

sequence L 5 ( l i)i P N0 on which the construction of Section 2.2 is based.

For i 5 1, 2, . . . , we let

g i : 5 (0, . . . , 0, 1, 0, 0, . . .) P G where 1 is in the ith place

and we let ti P K 5 R(( G )) be the one-term series ti : 5 1 ? t g i. Thus v (ti)
5 g i and, in particular, T (ti) Þ T (tj) for i Þ j. It follows that the elements
ti (i P N ) are algebraically independent over R.

Let n P N. The residue field KÃ
n is isomorphic to R(( D n)). Every d P

D n can be written as d 5 r1 g 1 1 . . . 1 rn g n for some r1, . . . , rn P Z. Then

t d 5 t r1
1 ? . . . ? t rn

n . From this remark we derive the following description KÃ
n.

Lemma 2. The residue field KÃ
n is isomorphic to the field R((t1, . . . , tn))

of all formal power series in t1, . . . , tn.

Notice that KÃ
n is isomorphic to a subfield of K, namely the closure of

the subfield generated by {t1, . . . , tn} over R.

3.1. A First Example

We put

l (1)
0 5 t0 : 5 1, l (1)

i : 5 ti for i 5 1, 2, . . .

Clearly the sequence ( l (1)
i )i P N0 satisfies the condition (*), so we can apply

the construction of Section 2.2. We let (E (1), F (1)) be the orthomodular space

thus obtained.

The residual spaces of (E (1), F (1)) are easily described. Indeed, since
F (1)(ei , ei) 5 ti , it follows that p n(ei) Þ 0 for i # n and p n(ei) 5 0 for i .
n. Noticing that p n is continuous and preserves orthogonality, we see that

EÃ(1)
n 5 p n(E ) is spanned by the vectors eÃ0 5 p n(e0), . . . , eÃn : 5 p n(en).

Moreover,

F Ã(1)
n (eÃi , eÃj ) 5 0 for 0 # i , j # n,

F Ã(1)
n (eÃi , eÃi ) 5 ti for 0 # i # n
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We have shown:

Lemma 3. Let (EÃ(1)
n , F Ã(1)

n ) be the residual space of (E (1), F (1)) belonging

to D n. Then:

(i) dim EÃ(1)
n 5 n 1 1.

(ii) F Ã(1)
n . diag(1, t1, t2, . . . , tn).

Now we look at operators. The main result is the following.

Theorem 4. Every bounded, self-adjoint linear operator A: E (1) ® E (1)

gives rise to a representation of E (1) as the closure of an orthogonal direct

sum of countably many invariant subspaces each of which is of dimension

1 or 2. That is, A can be represented as A 5 ( `
i 5 0Qi , where the Qi are pairwise

orthogonal operators of rank 1 or 2.

For a proof we refer to Keller and Ochsenius (1995b).

3.2. A Second Example

We express every integer i P N as a dual number,

i 5 e 0 ? 20 1 e 1 ? 21 1 e 2 ? 22 1 ? ? ? 1 e k 2 1 ? 2k 2 1

where k P N and e 0, . . . , e k 2 1 P {0, 1}, and we put

l (2)
i : 5 t e 0

1 t e 1
2 t e 2

3 ? ? ? t e k 2 1
k

We have

v ( l (2)
i ) 5 v (t e 0

1 t e 1
2 t e 2

3 ? ? ? t e k 2 1
k )

5 e 0 g 1 1 e 1 g 2 1 ? ? ? 1 e m 2 1 g m

5 ( e 0, e 1, . . . , e m 2 1, 0, . . .)

from which we easily deduce that the sequence L (2) : 5 ( l (2)
i )i P N0 satisfies

the requirement (*). Applying the construction of Section 2.2, we obtain an

orthomodular space (E (2), F (2)).

We look at the residual spaces.

Lemma 5. Let (EÃ(2)
n , f Ã(2)

n ) be the residual space of (E (2), F (2)) belonging

to D n.

(i) { p n(e0), p n(e1), . . . , p n(e2n 2 1)} is an orthogonal base of EÃ(2)
n . Thus

dim EÃ(2)
n 5 2n.

(ii) F Ã(2)
n . diag(1, t1, t2, t1t2, . . . , t1t2, . . . 1n) . diag(1, t1) ^ . . . ^

diag(1, tn).

We now state the main result.
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Theorem 6. On the orthomodular space (E (2), F (2)) there exist bounded,

self-adjoint operators which do not admit any proper, closed invariant

subspace.

Outline of Poof. (1) We define recursively matrices !1, !2, . . . as

follows. For n P N we let (n 2 1 be the unit matrix of size 2n 2 1 3 2n 2 1. We put

!1 : 5 F 0 t1

1 0 G ; !n : 5 F !n 2 1 tn ? (n 2 1

(n 2 1 !n 2 1 G
Then !n is a matrix of size 2n 3 2n with entries in R((t1, . . . , tn)).

For each n P N, the matrix !n defines a linear operator An on the

residual space EÃ(2)
n (with respect to the canonical base { p n(e0), . . . ,

p n(e2n 2 1)}). It is readily verified that An is self-adjoint. In Keller and Ochsenius

(n.d.) we establish the following basic result.

Lemma 7. The operators An are orthogonally undecomposable.

(2) We now prove that the sequence of operators (An)n P N on the residual
spaces can be lifted to the whole space E, i.e., there exists an operator AÅ : E
® E such that An is equal to the operator AÅ n induced by A on EÃ(2)

n . Let x P
E. Then p n(x) is defined for all n from some n0 on. For every n $ n0 we

choose a vector yn P E such that p n( yn) 5 An( p n(x)). From the definition of

the matrices !n we deduce that ( yn)n $ n0 is a Cauchy sequence. We define

A: E ® E by putting A (x) : 5 limn©̀ yn P E. A is well-defined, A is self-
adjoint, and AÃn 5 An by construction.

3. Suppose, indirectly, that E admits a nontrivial closed subspaces U
which is invariant under A. Then E 5 U % U ’ by orthomodularity. Pick

0 Þ u P U, 0 Þ v P U ’ , and n P N such that p n(u) Þ 0 Þ p n(v). Then

EÃ(2)
n 5 p n(E ) 5 p n(U ) % p n(U

’ ) is a nontrivial decomposition of the residual

space EÃ(2)
n . Now U is invariant under A, so p n(U ) is invariant under the

reduced operator AÃn , which is equal to An. This contradicts Lemma 7 and

the proof is complete.
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